Review Material

Chapters 1-3 of Matrix Analyis
Textbook



Problem: Solve the following syvstem using (GGaussian elimination with back sub-

Textbook stitution:

Example 1.2.1 v — w = 3,
—2u + v — w = :
—2u + 5v — 4w = — 2.

Solution: The associated angmented matrix is

o 1 -1 3
-2 4 -1 1
—2 5 —4 —2

Since the first pivotal position contains (0, interchange rows one and two bhefore
eliminating below the first pivot:

et

I:EF":I 1 —1 3 I'nterchange Ry and Hs I:E:I 4 -1 1
—2 4 -1 1 —_— 0 1 -1 3
25 —4 | -2 25 4| —2) Ry R,
-2 4 -1 1 -2 4 -1 1
— 0 (1 -1 3 — 01 -1
0o 1 -3 | -3/ R, R, ( o0 -2 | -6

Back substitution vields

—6
W = 3.

___2=

v=3d+w=3+3=06,

1 1
==—1{(1—4dv+ LL':J=_—2{1—2-'-L—I-3:J=1D.



Problem: Applyv the Gauss—Jordan method to solve the following syatem:

Textbook 2r1 + 2r9 + 6Brs =

Example 1.3.1 2r1 + x2 + Tra = 6,
—2r1 — br9 — Trg = — 1.

Solution: The sequence of operations is indicated in parentheses and the pivots
are circled,

|i€] 2 ¥ 4 RL.IE 17 1 3 2
2 1 7 6 — 2 1 7 6 | Ry — 2R,
—2 -6 -7 | —1 —2 —6 -7 | —-1/) Ry+2R,
W 1 3| 2 1 1 3 2\ Ry — Rs
— 0 -1 1 2| (=R2) — | O (1) —1 —2
0 -4 -1 3 0 —4 -1 3 ) Hs+ 4R
1 0 4 4 1 4 4\ Ry — 4H;4
— 0o (1) -1 —2 — 0 1 -1 -2 | Rs+ Ry
0 0 -5 | —=5/) —Ry/5 0o 0 (1O 1
1 0 0 0
— |0 1 0 —1
0 0 () 1
T §]
Therefore. the solutionis | o2 | = | —1
o i 1



Textbook
Example 2.1.1

Problem: Apply modified Gaussian elimination to the following matrix and
circle the pivot positions:

1 2 1 3 3
2 4 0 4 4
A= 1 2 3 5 5
2 4 0 4 7
Solution:
[E] 2 J_ 3 3 ':E} 2 J. 3 3
2 4 0 4 4 0 0 I:Ezfj -2 =2
1 2 3 5 5 0 0 2 2 2
2 4 0 4 7 o o0 -2 =2 1
[E] 2 % 2 3 I-:E:I 2 1 3 3
0 0 2 -2 -2 0 0 (z -2 -2
0o 0o 0 0 (o o 0 0 0 (3
o o 0 0 3 0 0 0 0 )]



Row Echelon Form

An m x n matrix E with rows E;, and columns E,; 1s said to be in
row echelon form provided the following two conditions hold.

e If E;, consists entirely of zeros, then all rows below E;. are also
entirely zero; 1.e., all zero rows are at the bottom.

o If the first nonzero entry in E;, lies in the j'™ position, then all
entries below the i*" position in columns E,1,E.,. .., E.; are zero.

These two conditions say that the nonzero entries in an echelon form
must lie on or above a stair-step line that emanates from the upper-
letft-hand corner and slopes down and to the right. The pivots are the
first nonzero entries in each row. A typical structure for a matrix in row
echelon form is illustrated below with the pivots circled.

(o N s T s T S R -
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Problem: Determine the rank. and identity the basic columns in

Textbook 1 92 1 1
Example 2.1.2 A=12 4 2 2
3 6 3 4

Solution: Reduce A to row echelon form as shown below:
@ 1 1 @ 2 1 1 @
2 2 21 — 0o 0 0 @ — 0
3 3 4 0o o0 0 1 0

A=

1
D | =%
0

= k= B
= 2D 2
o I e Y

Consequently, rank (A) = 2. The pivotal positions lie in the first and fourth
columns so that the basic columns of A are A,y and A.,. That is,

1 1
Basiec Columns = 21, 2
3 4

Pay particular attention to the fact that the basic columns are extracted from
A and not from the row echelon form E .



Reduced Row Echelon Form

A matrix E,, ., 18 2aid to be in reduced row echelon form provided
that the following three conditions hold.
¢ F is in row echelon form.

e The first nonzero entry in each row (i.e., each pivot) is 1.
e All entries above each pivot are 0.

A typical structure for a matrix in reduced row echelon form 1s illustrated
below, where entries marked * can be either zero or nonzero numbers:
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3, and {A.,, A.3,A.s} are the three basic columns.

Theretore, rank (A)



If such
relationships
exist, then the
columns

are said to be
"linearly
dependent.”
Otherwise the
columns are
"linearly
independent.”

Column Relationships in A and E,

e FEach nonbasic column E,; in Ex is a combination (a sum of mul-
tiples) of the basic columns in E5 to the left of E,;. That is,

E.r = 1B, + poEu, + -+ p;Eo,
AEA (o) ()

= Ji1 [] + p2 [] + 1 = ,U:j

L) L) W) L

where the E.; s are the basic columns to the left of E,; and where
the multipliers p; are the first j entries in E,;.

e The relationships that exist among the columns of A are exactly
the same as the relationships that exist among the columns of E4.
In particular, if A.,; 1s a nonbasic column in A |, then

A=A, oAy, +-- -+ 1A, (2.2.3)
where the A,;’s are the basic columns to the left of A,;, and

where the multipliers p; are as described above—the first j entries
in E,;.



Problem: Write each nonbasic column as a combination of basic columns in

2 -4 -5 6 3

Textbook
A=110 1 3 2 3

Example 2.2.3 7 _9 0 0 8
Solution: Transform A to Ea as shown below.
2) -4 -8 6 3 L -2 -4 3 3 O -2 -4 3 3
0 1 3 2 31— 0 1 3 2 3 |—={0 (O 3 2 3 |—
3 =2 0 0 8 3 =2 0 0 8 0 4 12 -9 %
1 0 2 T2 v o0 2 7 ¥ 1 0 2 0 4
0 (1) 3 2 31— 0 (1 3 2 3 ]—=(0 (O 3 0 2
0 0 0 —-17 -4 0 0 0 (O 3 0 0 0 O 3
The third and fifth columns are nonbasic. Looking at the columns in E s reveals

1
E.,3=2F, 1 +3E,2 and E,,=4E, +2E.+ §E*4.

The relationships that exist among the columns of A must be exactly the same
as those in Ea. so

1
Aqs2=2A1+3A,, and A.,=4A,4+2A .+ §A*4.

You can easily check the validity of these equations by direct calculation.



Rather than depending on geometry to establish consistency, we nse (Gans-
sian elimination. If the associated angmented matrix [A|b] is reduced by row
operations to a matrix [E|c| that is in row echelon form, then consistency—or
lack of it—becomes evident. Suppose that somewhere in the process of redue-
ing [A|b| to [E|c|] a situation arises in which the only nonzero entry in a row
appears on the right-hand side. as illustrated below:

Row i — — o = 0,

* & OO O ¥
* O O O ¥
* 8 DD D ¥

. 0 O O ¥ ¥
. 8 O % ¥ ¥
. 8 O % ¥ ¥
* & D ¥ X ¥

If this oceurs in the ** row, then the % equation of the associated system is
Ory +O0rg +--- 4+ 02y, = v,

For o £ 0, this equation has no solution, and hence the original syvstem must
also be inconsistent (because row operations don’t alter the solution set). The
converse also holds. That is, if a system is inconsistent, then somewhere in the
elimination process a row of the form

(00 - 0 | a), a0 (2.3.1)

must appear. Otherwise, the back substitution process can be completed and
a solution is produced. There is no inconsistency indicated when a row of the
form (00 ---0]0) is encountered. This simply says that 0 =0, and although
this is no help in determining the value of anv unknown, it is nevertheless a true
statement., so it doesn’t indicate inconsistency in the system.






Problem: Determine if the following svstem is consistent:
r1+ T2+ 2r3+2r4+ z5=1,
Textbook 2ry + 2ra + drg + 4Ary + 315 = 1,
2r1 + 219 + dxz + 414 + 225 = 2,

Example 2.3.1 30y + 5T + Srs + 624 + 5rs = 3.

1

Solution: Apply Gaussian elimination to the augmented matrix [A|b] asshown:

5y

(1) 1 2 2 1 1 i 1 2 2 1 1
2 2 4 4 3 |1 o (@ 00 1] —1
2 24 4 212 1o o o000 0
4 5 B 6 5 3 ) 2 2 0 2 0
W 1 2 2 1 1

0 (2 2 0 2 0

1o o0 00 (| -1

0 I | 0

Because a row of the form (0 0 --- 0 | a) with a # 0 never emerges,

the svstem is consistent. We might also observe that b is a nonbasic column
in [A|b] sothat rank[A|b] = rank (A). Finally, by completely reducing A to
E 4. it is possible to verify that b is indeed a combination of the basic colnmns
{Ad‘AiE'A*S}'



For example.

-2 x 3 n 2 1-z -2\ (0 1 1
z4+3 4 —y -3 4d44x 44y/) \z 8+zx 4)/)°



Properties of Matrix Addition

For m x n matrices A, B, and C, the following properties hold.

Closure property: A + B 1s again an m x n matrix.
Associative property: (A4+B)+C=A+ (B +C).
Commutative property: A+B =D + A.

Additive identity: The m x n matrix 0 consisting of all ze-
ros has the property that A 4+ 0= A.

Additive inverse: The m x n matrix (—A) has the property
that A +(—A)=0.



Scalar Multiplication

The product of a scalar o times a matrix A. denoted by aA, is defined
to be the matrix obtained by multiplying each entry of A by «. That
is, [@A];; = a[A];; for each i and j.

For example,

e}
[

and

H= = b2
i Y N T W
I
b O B2
T N Y =
) G =
I
o T T
b 00 e

1
210
1



Properties of Scalar Multiplication

For m »x n matrices A and B and for scalars o« and (3, the following
properties hold.

Closure property: aA is again an m x n maftrix.
Associative property: (af)A = a(FA).

Distributive property: a(A + B) = aA + aB. Scalar multiplica-
tion 1s distributed over matrix addition.

Distributive property: (a + F)A = aA + FA. Scalar multiplica-
tion 1s distributed over scalar addition.

Identity property: 1A = A. The number 1 is an identity el-
ement under scalar multiplication.






Hermitian Transpose

For A = [a;;], the conjugate matriz is defined to be A = [a@;;], and
the conjugate transpose of A is defined to be AT = AT, From now

on, AT will be denoted by AH, so [AH]. ; = @j;. For example,

(1—41 i 2)”_ Y
3 241 0 9 0

(AH)H = A for all matrices, and AH = AT whenever A contains only
real entries. Sometimes the matrix AP 1s called the Hermitianof A.



Properties of the Transpose/Hermitian Transpose

It A and B are two matrices of the same shape, and if a 18 a scalar,
then each of the tollowing statements 18 true.

(A+B) =AT + BT and (A4+B)H=A"1B" (3.2.1)

(aA) =aAT and (aA)"==A". (3.2.2)



Symmetries

Let A = [a;;] be a square matrix.

e A is said to be a symmetric matriz whenever A = AT, ie.,
whenever a;; = a;;.

e A issaid to be a skew-symmetric matriz whenever A = — AT
1.e., whenever a;; = —aj;.

e A is said to be a hermitian matriz whenever A = A" ie,
whenever a;; = @;;. This 18 the complex analog of symmetry.

e A issaid to be a skew-hermatian matriz when A = —A"M ie.,
whenever a;; = —a;;. This is the complex analog of skew symmetry.

For example, consider
1 2441 13 1 244 1-3
A=12-4 3 8 4+ 61 and B=| 244 3 8 4+ 61
1+31 8—61 5 1 —-31 8461 5



Linear Functions

Suppose that D and R are sets that possess an addition operation as
well as a scalar multiplication operation—i.e., a multiplication between
scalars and set members. A function f that maps points in D to points
in ‘R issaid to be a linear function whenever f satisfies the conditions
that

fle+y) = flz)+ fly) (3.3.1)

and

flaz) = af(z) (3.3.2)

for every = and y in D and for all scalars «. These two conditions
may be combined by saying that f 12 a linear function whenever

flaz +y) = af(z) + f(y) (3.3.3)

for all scalars o and for all z,y € D.



One of the simplest linear functions is f(z) = axr. whose graph in R*

straight line through the origin. You should convince yourself that [ is indeed
a linear function according to the above definition. However, f(x) = ax + 3
does not quality for the title “linear function™—it is a linear function that has
been translated by a constant [#. Translations of linear functions are referred to
as affine functions. Virtually all information concerning affine functions can
be derived from an understanding of linear functions, and consequently we will
focus only on 1ssues of linearity.

1S 2.



Linearity 12 encountered at every turn. For example, the familiar operations
of differentiation and integration may be viewed as linear functions. Since

dif+9) _df | g Hef) 4

dxr T dr d T dx ff.:n:

the differentiation operator D, (f) = df /dz is linear. Similarly,

/[f—l—g]d;r= /fff;r—l—/gd;r and /nfﬂ’;r= n/fd;?:

means that the integration operator I(f) = [ fdx is linear.
There are several important matrix functions that are linear. For example,
the transposition function f(X,,x,) = X" is linear because

(A + B]T AT+ BT and [&A]T — Al

(recall (3.2.1) and (3.2.2)). Another matrix function that 1s linear is the trace
function presented below.



Textbook
Example 3.3.1

The trace of an n x n matrix A = [a;;] is defined to be the sum of the entries
lying on the main diagonal of A. That is,

n

trace (A) =a11 + aso + -+ apn = Z ;.
=1

Problem: Show that f(X, .,) = trace(X) 1s a linear function.

Solution: Let’s be efficient by showing that (3.3.3) holds. Let A = [a;;] and
B = [b;;], and write

flaA +B) =trace (aA+B) = Z[ﬂ_ﬁ—"i + BJ;; = (cva;; + by
=1 1=1

T T T T
= Z aag; + Z b, = &Z a;; + Z b,y = atrace (A) + trace (B)
i=1 i=1 i=1 i=1

=af(A)+ f(B).



R=(rp ro -+ rp) and C=

Cr

the standard inner product of R with C is defined to be the scalar
n
RC =riey + o200+ -+ rpin = Z riey.
=1

For example,

1
(2 4 =2)[2]=02)(1)+(4(2)+(=2)(3) =4
3






For example, if

o by bia byg Dbyy
A= (ﬂ” ﬂm ﬂ”) and B = | by by bag boy
21 @22 (23 /5,4 bar  baa baz bas )

[ | inside ones match ] A[

shape of the product

then the product AB exists and has shape 2 x 4. Consider a tyvpical entry of
this product, say, the (2.3)-entry. The definition says [AB]zz is obtained by
forming the inner product of the second row of A with the third column of B

Gz1 Oz  Gas bor  Dog | Do | bog
bar b3z |baa| bay

( @11 Qg Qq3 ) b bz [ bis | b

S0

3
[AB]zg = Ay, B3 = ag1b13 + aagbaz + aa3baz = Z g g,
k=1
For example,

_ 1 3 -3 2 i
A:(_;’ é _é),]g: 2 5 -1 8 :’“'AE:(—E ? o j)
' —1 2 n 2 '



Textbook
Example 3.5.1

The cancellation law (3.5.3) fails for matrix multiplication. If
11 2 2 3 1
A=(1 1). ]E’.-=(:3 2). and C=(1 3).

AB:(:LL i):Ac but B+ C

then

in spite of the fact that A £ 0.






1 =2 0
5]

3 _4 L)andE= 2 =7 2. then the

For example, if A = (

second row of AB is

3 —5 1
[ABJ2. = A2,B=(3 —4 5)|2 -7 2|=(6 3 —5),
1 -2 0

and the second column of AB is

-5
1 -2 0 A A
an-ana- (2 0 ()2 ().

This example makes the point that it is wasted effort to compute the entire
product if only one row or column is called for. Although it’s not necessarv to
compute the complete product, voun mayv wish to verifv that

_ 3 —5 1 |
AB:(é j ﬂ) 2 -7 2 =(_é g :E‘)
A1 =2 0 -






Textbook
Example 3.6.1

Linearity of Matrix Multiplication. Let A be an m = n matrix, and [ be
the function defined by matrix multiplication

f(Xorp) = AX.

The left-hand distributive propertv gnarantees that [ is a linear function be-
canse for all scalars o and for all n =< p matrices X and Y,

flaX +Y) =AlaX+Y)=AaX)+AY =cAX + AY
— af(X)+ f(Y).
Of course, the linearity of matrix multiplication is no surprise because it was

the consideration of linear functions that motivated the definition of the matrix
product at the outset.






Analogous to scalar algebra, we define the 0% power of a square matrix to
be the identity matrix of corresponding size. That is, if A is n x n, then

Pogitive powers of A are also defined in the natural way. That is,
A" =AA A
'._“I‘II
n times

The associative law guarantees that it makes no difference how matrices are
grouped for powering. For example, AA? is the same as A?A, so that

AT =AAA = AA? = A%A
Also, the nusual laws of exponents hold. For nonnegative integers v and s,
ATAS =A™ and (A")" = A"

We are not vet in a position to define negative or fractional powers, and due to
the lack of conformability, powers of nonsquare matrices are never defined.



Textbook
Example 3.6.2

* . . ; 2
A Pitfall. For two n x n matrices, what is (A 4+ B)"7 Be careful! Because
matrix multiplication is not commutative, the familiar formula from scalar alge-
bra is not valid for matrices. The distributive properties mnst be used to write

(A+BP?=(A+B)(A+B)=(A+B)A+(A+B)B
S R R

— A+ BA + AB + B

and this is as far as vou can go. The familiar form AZ+2AB+B? is obtained only
in those rare cases where AB = BA. To evaluate (A + B)*, the distributive
rules mnst be applied repeatedly. and the results are a bit more complicated—try
it for &= 3.






Textbook
Example 3.6.4

For every matrix A,,.,. the products AT A and AA7T are symmetric matrices
becanse

(ATA)" = ATAT" — ATA and (AAT)" = ATTAT — AAT.



Textbook
Example 3.6.5

Trace of a Product. Recall from Example 3.3.1 that the trace of a square
matrix is the sum of its main diagonal entries. Although matrix multiplication
15 not commutative, the trace function is one of the few cases where the order of
the matrices can be changed without affecting the results.

Problem: For matrices A, ., and B, ...,

trace (AB) = trace (BA)

Ll
Ky

MNote: This is true in spite of the fact that AB is m = m while BA is n = n.
Furthermore, this result can be extended to say that any product of conformable

matrices can be permmted cyelically without altering the trace of the product.
For example,

trace (ABC) = frace (BCA) = trace (CAB).
However, a noncycelical permutation mayv not preserve the trace. For example,
trace (ABC) # trace (BAC).



Block Matrix Multiplication

suppose that A and B are partitioned into submatrices—often referred
to as blocks—as indicated below.

All Alﬂ e Al-r B‘ll BlE e Blt
A — A.El A-EE : A.E-r | B— B‘.El B-ZE ' B-Zt
Aal ASE U As:r E‘-rl HTE S H:rt

If the pairs (A;;.By;) are conformable, then A and B are said to
be conformably partitioned. For such matrices, the product AB is
formed by combining the blocks exactly the same way as the scalars are
combined in ordinary matrix multiplication. That is, the (i, j) -block in
AB is

AiBy; +ApBy +---+ A B,y



Textbook
Example 3.6.6

Block multiplication is particularly useful when there are patterns in the matrices
to be multiplied. Consider the partitioned matrices

(1 0

B S S

2 0

1
1 0
z(c I). n_

0 I o 1
0 3

1 0 1 2
I:(l] 1) and C=(3 _4).

Using block multiplication, the product AB is easily computed to be

s B e R R
= | e
o s ) Y s I

e e ===
= bJ | =

N N

where

2 4

C 1 I o 2C C 6
28=(T o)(c ¢)=(T 0)=|;
0

=
= O | W
= | =




Textbook
Example 3.6.7

Reducibility. Suppose that T, .,.x = b represents a system of linear equa-
tions in which the coefficient matrix iz block triangular. That is, T can be
partitioned as

T= (‘3 g) , Wwhere A isrxrand Cisn—r=xn—r. (3.6.3)

If x and b are similarly partitioned as x = (i;) and b = (E; ) then block

multiplication shows that Tx = b reduces to two smaller systems

Axy + Bxs = by,
CKE = hg.
g0 if all systems are consistent, a block version of back substitution is possible—

L.e., solve Cxs = by for x5, and substituted this back into Axy = by — Bxs,
which is then solved for x.


















Textbook
Example 3.8.1

Problem: Start with A and A~! given below. Update A by adding 1 to as,
and then use the Sherman-Morrison formula to update A—1:

(1 2 [ 3 =2
A—(l 3) and A —(_1 1).

Solution: The npdated matrix is

1 2 1 2 0 0 1 2 0y . .
Ez(g 3):(1 3)4—(1 D):(l 3)4—(1)(1 0)=A +ege].

Applyving the Sherman-—Morrison formula yields the updated inverse

1 A_IE‘EET&_I A (A=, o[A]y,
1+ el A-le, 1+ [A—1]2

_2)(3 —2

ey

B™'=A
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